The tricky part is measuring energy code compliance
In 2014, NASEO was awarded a DOE Grant to conduct an energy code field study in Texas. Later narrowed to 30 counties around Houston.

Methodology developed by DOE and PNNL

Three phases
1. Baseline field study
2. Education, training and outreach
3. Final field study

Project partners: Texas State Energy Conservation Office, South-central Partnership for Energy Efficiency as a Resource (SPEER), Britt-Makela Group (now Cadmus), Pacific Northwest National Laboratory
Part of a nationwide effort

- 4500 homes visited across 25 states

- DOE funded studies have been conducted in:
 - Alabama
 - Arkansas
 - Georgia
 - Kentucky
 - Maryland
 - North Carolina
 - Pennsylvania
 - Texas

- Next cohort:
 - Colorado (NASEO)
 - Nevada (NASEO)
 - Arizona
 - Utah

- Addition studies conducted in:
 - Connecticut
 - Delaware
 - Idaho
 - Illinois
 - Michigan
 - Montana
 - Nebraska
 - Tennessee
 - Virginia
 - West Virginia
Methodology

Highlights

- Results to be based on an energy metric and reported at the state-level
- Focuses on individual code requirements within new single-family homes
- Data confidentially built into the experiment-no personal data will be shared
- Designed around a single site-visit prioritizing key items
- Designed with statistically significant results in mind

Phase III

Prescriptive Code Minimum EUI
(vertical solid line): 22.6
Observed EUI
(vertical dashed line): 23.53
Key measures

1. Envelope tightness (ACH at 50 Pascals)
2. Window SHGC
3. Window U-factor
4. Exterior wall insulation (assembly U-factor)
5. Ceiling insulation (R-value)
6. Lighting (% high-efficacy)
7. Foundation insulation (R-value)
8. Duct tightness (expressed in cfm per 100 ft2 of conditioned floor area at 25 Pascals)

Additional information gathered:
Square feet, number of stories, wall profile, builder profile (number of homes built/yr., envelope data, HVAC equipment profiles, location of ducts, water heaters, ventilation systems
SUCESSSES + ACCOMPLISHMENTS

+ Established empirical data set representing typical construction practices across several states
+ New methodology moves past 90% compliance mentality and re-focused on energy metric
+ We have a much better grasp on key items and their impact
+ What’s happening in the field appears much better than expected (on average)—significant improvement to code compliance estimates
+ Enabled existing education & training programs to focus on the most important (key) items and achieve greater bang-for-the-buck
+ Value in states performing regular studies—measure impacts and inform ongoing state education and training activities
+ Interest in expanding these types of studies to capture and track new and advancing technologies (market penetration)
SUCESSES + ACCOMPLISHMENTS (continued)

+ Results have influenced several state and national training efforts
 (e.g., insulation installation quality and grading)
+ States have elected to update their codes based on data and findings
+ IECC has been updated based on data and findings
 (e.g., windows, lighting, envelope air tightness, duct tightness, etc.)
+ Identified significant savings potential associated with key items—
 hundreds of millions over 30 years—through codes already in place
+ Reduced average statewide energy use and measure savings potential
RESULT: 7 of 7 states reduced their measure savings potential

Source- Jeremy Williams, U.S. DOE presentation- National Energy Codes Conference 2019
Key findings

- The buildings industry is generally doing a good job implementing energy efficiency codes

- Homes using less energy on average than expected based on prescriptive measures (majority of states)

- Certain measures universally met code (e.g., windows)

- But, still significant ‘savings left on the table’ focusing programs on target measures (millions of dollars)

Source- Jeremy Williams, U.S. DOE presentation- National Energy Codes Conference 2019
In 2019, NASEO was awarded a grant to conduct field studies in Nevada and Colorado

Two phases
1. Baseline Field Study
2. Education training and outreach

Why conduct field studies?

- DOE has established an “off the shelf” resource – the Field Study Methodology document available on the Building Energy Code Program web site.

- The data collected can be used to focus training of building officials, home builders.

- Energy codes save energy and money for every occupant of a home for the life of the structure. Field studies provide information on the building practices in your state and identify areas where performance may be improved.
Why conduct field studies?

- Results can be taken and used by stakeholders in your state- state energy office, utilities, REEOs, others

- Results may show that current codes are being exceeded in some areas, while leaving savings on the table in others.
IECC 2021 - Residential

- Committee Action Hearings took place in Albuquerque, NM in April & May

- No major gains in residential energy efficiency, no roll backs either.

- EV ready was proposed for IECC 2021 residential, disapproved by committee

- Gains in water heating efficiency have both energy and water saving benefits
IECC 2021- Commercial

- Transparency requirements- certificates for commercial buildings describing envelope, HVAC, and other systems.

- Energy recovery ventilation required in multifamily buildings.

- Lighting power density (LPD) in line with ASHRAE 90.1-2019.

- Plug load- 50% of receptacles in certain occupancies must be controlled
IECC 2021- Stay tuned

- Next step- Public Comment Hearings in Las Vegas in late October, early November

- NASEO has convened an Energy Code Task Force of states a couple of affiliates to work together to prepare for the code development process.
Thank you

Ed Carley
National Association of State Energy Officials
Senior Buildings Program Manager
703-299-8800 x 119
ecarley@naseo.org
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Air Leakage</td>
<td>27,182</td>
<td>484,314</td>
<td>3,092</td>
<td>581</td>
<td>10,321</td>
<td>65</td>
</tr>
<tr>
<td>Ceiling Insulation</td>
<td>11,372</td>
<td>215,656</td>
<td>1,080</td>
<td>4,835</td>
<td>91,786</td>
<td>595</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>9,277</td>
<td>171,044</td>
<td>1,102</td>
<td>8243</td>
<td>151,974</td>
<td>976</td>
</tr>
<tr>
<td>Foundation Insulation</td>
<td>6,800</td>
<td>108,156</td>
<td>668</td>
<td>11,676</td>
<td>178,905</td>
<td>1,075</td>
</tr>
<tr>
<td>Lighting</td>
<td>5,742</td>
<td>197,544</td>
<td>1,427</td>
<td>4,454</td>
<td>153,383</td>
<td>1,130</td>
</tr>
<tr>
<td>Duct Leakage</td>
<td>2,135</td>
<td>43,142</td>
<td>284</td>
<td>17,151</td>
<td>342,217</td>
<td>2,251</td>
</tr>
<tr>
<td>TOTAL</td>
<td>62,508</td>
<td>$1,219,856</td>
<td>7,653</td>
<td>46,941</td>
<td>$928,585</td>
<td>6,093</td>
</tr>
<tr>
<td>Savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25% 24% 20%</td>
</tr>
</tbody>
</table>

Source: Ian Blanding, MEEA
<table>
<thead>
<tr>
<th>Measure</th>
<th>Climate Zone</th>
<th>Electricity Savings (kWh/home)</th>
<th>Natural Gas Savings (therms/home)</th>
<th>Total Savings (kBtu/home)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct Leakage</td>
<td>2A</td>
<td>330</td>
<td>4</td>
<td>1,539</td>
<td>2,053</td>
<td>3,160</td>
<td>88,351</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>307</td>
<td>5</td>
<td>1,611</td>
<td>7,453</td>
<td>11,258</td>
<td>306,577</td>
<td>1,759</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>312</td>
<td>5</td>
<td>1,517</td>
<td>9,806</td>
<td>14,420</td>
<td>395,063</td>
<td>2,272</td>
</tr>
<tr>
<td>Lighting</td>
<td>2A</td>
<td>396</td>
<td>-1</td>
<td>1,237</td>
<td>2,053</td>
<td>2,540</td>
<td>88,164</td>
<td>548</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>374</td>
<td>-2</td>
<td>1,119</td>
<td>7,453</td>
<td>8,343</td>
<td>297,088</td>
<td>1,889</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>379</td>
<td>-1</td>
<td>1,146</td>
<td>9,806</td>
<td>10,891</td>
<td>385,451</td>
<td>2,408</td>
</tr>
<tr>
<td>Envelope Air Leakage</td>
<td>2A</td>
<td>143</td>
<td>5</td>
<td>946</td>
<td>2,053</td>
<td>1,943</td>
<td>46,517</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>178</td>
<td>6</td>
<td>1,246</td>
<td>7,453</td>
<td>9,286</td>
<td>217,033</td>
<td>1,166</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>170</td>
<td>6</td>
<td>1,179</td>
<td>9,806</td>
<td>11,207</td>
<td>263,089</td>
<td>1,417</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>2A</td>
<td>121</td>
<td>3</td>
<td>679</td>
<td>2,053</td>
<td>1,395</td>
<td>35,824</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>149</td>
<td>4</td>
<td>891</td>
<td>7,453</td>
<td>6,642</td>
<td>165,622</td>
<td>917</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>143</td>
<td>4</td>
<td>844</td>
<td>9,806</td>
<td>8,022</td>
<td>201,105</td>
<td>1,116</td>
</tr>
<tr>
<td>Window SHGC</td>
<td>2A</td>
<td>67</td>
<td>-0.4</td>
<td>182</td>
<td>2,053</td>
<td>375</td>
<td>14,166</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>57</td>
<td>-0.7</td>
<td>124</td>
<td>7,453</td>
<td>930</td>
<td>40,403</td>
<td>265</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>59</td>
<td>-0.6</td>
<td>138</td>
<td>9,806</td>
<td>1,309</td>
<td>54,674</td>
<td>356</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1,064</td>
<td>12</td>
<td>4,823</td>
<td>9,506</td>
<td>45,849</td>
<td>1,299,382</td>
<td>7,569</td>
</tr>
</tbody>
</table>

Phase III

<table>
<thead>
<tr>
<th>Measure</th>
<th>Climate Zone</th>
<th>Electricity Savings (kWh/home)</th>
<th>Natural Gas Savings (therms/home)</th>
<th>Total Savings (kBtu/home)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct Leakage</td>
<td>2A</td>
<td>272</td>
<td>3</td>
<td>1,267</td>
<td>2,053</td>
<td>2,600</td>
<td>72,745</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>251</td>
<td>4</td>
<td>1,322</td>
<td>7,453</td>
<td>9,185</td>
<td>250,493</td>
<td>1,449</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>255</td>
<td>4</td>
<td>1,240</td>
<td>9,806</td>
<td>11,207</td>
<td>323,238</td>
<td>1,874</td>
</tr>
<tr>
<td>Lighting</td>
<td>2A</td>
<td>298</td>
<td>-1</td>
<td>932</td>
<td>2,053</td>
<td>1,914</td>
<td>66,494</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>282</td>
<td>-1</td>
<td>844</td>
<td>7,453</td>
<td>6,289</td>
<td>224,155</td>
<td>1,427</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>286</td>
<td>-1</td>
<td>864</td>
<td>9,806</td>
<td>8,203</td>
<td>290,449</td>
<td>1,847</td>
</tr>
<tr>
<td>Envelope Air Leakage</td>
<td>2A</td>
<td>101</td>
<td>3</td>
<td>664</td>
<td>2,053</td>
<td>1,363</td>
<td>32,666</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>125</td>
<td>4</td>
<td>875</td>
<td>7,453</td>
<td>6,520</td>
<td>152,418</td>
<td>819</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>119</td>
<td>4</td>
<td>828</td>
<td>9,806</td>
<td>7,883</td>
<td>185,084</td>
<td>996</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>2A</td>
<td>105</td>
<td>2</td>
<td>590</td>
<td>2,053</td>
<td>1,211</td>
<td>31,106</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>129</td>
<td>3</td>
<td>774</td>
<td>7,453</td>
<td>5,772</td>
<td>143,974</td>
<td>799</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>124</td>
<td>3</td>
<td>733</td>
<td>9,806</td>
<td>6,983</td>
<td>175,080</td>
<td>975</td>
</tr>
<tr>
<td>Window SHGC</td>
<td>2A</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
</tr>
<tr>
<td>State Total</td>
<td></td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
<td>NA*</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>785</td>
<td>10</td>
<td>3,665</td>
<td>9,506</td>
<td>34,855</td>
<td>974,051</td>
<td>5,693</td>
</tr>
</tbody>
</table>

Phase I

- Duct Leakage: 26%
- Lighting: 16%
- Exterior Wall Insulation: 24%
- Window SHGC: 24%
- Total State Emissions Reduction (MT CO2e): 25%
Duct Tightness (CFM25/100 ft² CFA) – Adjusted

Texas

Phase I

n = 64
avg = 6.49

Phase III

n = 89
avg = 3.11

Climate Zone
CZ 2
Duct Tightness (CFM25/100 ft² CFA) - Unadjusted

Texas

Phase I

- n = 64
- avg = 6.91

Phase III

- n = 89
- avg = 3.7

Climate Zone

- CZ 2
Ceiling R-Value

Texas

Phase I

- count
- Ceiling R

- n = 66
- avg = 35.62

Phase III

- count
- Ceiling R

- n = 72
- avg = 32.46

Climate Zone

- CZ 2

22
Ceiling U-Factor

Texas
Phase III

n = 72
avg = 0.03

Climate Zone
CZ 2
Frame Wall R-Value (Cavity)

Texas

Phase I

count

Climate Zone

CZ 2

Phase III

n = 62
avg = 13.47

n = 71
avg = 13.76
Frame Wall U-Factor

Texas

Phase I

n = 62
avg = 0.08

Phase III

n = 71
avg = 0.08

Climate Zone
CZ 2
+ Slab R-Value

Texas
Phase I

n = 106
avg = 0

Phase III

n = 130
avg = 0

Climate Zone
CZ 2

Slab Edge R

29
Floor R-Value (Cavity)

Texas
Phase I

n = 31
avg = 17.74

Climate Zone
CZ 2
Floor R-Value (Cont)

Texas

Phase I

n = 26
avg = 0

Climate Zone
- CZ 2
EUIs
Phase III

Prescriptive Code Minimum EUI (vertical solid line): 22.6
Observed EUI (vertical dashed line): 23.53

Energy Use Intensity (EUI) [kBtu/ft²]
Texas Phase I and Phase III EUI Comparison – CZ2A

![Graph showing comparison between Phase I and Phase III Energy Use Intensity (EUI) for CZ2A. The graph illustrates the percentage distribution of EUI values, with Phase III generally showing a higher percentage compared to Phase I.]
Statewide Measure Level Savings

Phase I

<table>
<thead>
<tr>
<th>Measure</th>
<th>Electricity Savings (kWh/home)</th>
<th>Natural Gas Savings (therms/home)</th>
<th>Total Energy Savings (kBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Saving (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Air Leakage</td>
<td>162</td>
<td>26</td>
<td>3130</td>
<td>100,608</td>
<td>314,889</td>
<td>4,856,869</td>
<td>88,045</td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>241</td>
<td>21</td>
<td>2913</td>
<td>100,608</td>
<td>293,040</td>
<td>5,029,894</td>
<td>129,948</td>
<td></td>
</tr>
<tr>
<td>Duct Leakage</td>
<td>210</td>
<td>11</td>
<td>1801</td>
<td>100,608</td>
<td>181,188</td>
<td>3,862,893</td>
<td>112,965</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>281</td>
<td>-2</td>
<td>701</td>
<td>100,608</td>
<td>70,571</td>
<td>2,774,421</td>
<td>139,105</td>
<td></td>
</tr>
<tr>
<td>Ceiling Insulation</td>
<td>24</td>
<td>2</td>
<td>235</td>
<td>100,608</td>
<td>23,677</td>
<td>443,058</td>
<td>13,027</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>898</td>
<td>58</td>
<td>8,780</td>
<td>100,608</td>
<td>883,385</td>
<td>16,487,105</td>
<td>483,060</td>
<td></td>
</tr>
</tbody>
</table>

Phase III

<table>
<thead>
<tr>
<th>Measure</th>
<th>Electricity Savings (kWh/home)</th>
<th>Natural Gas Savings (therms/home)</th>
<th>Total Energy Savings (kBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Saving (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Air Leakage</td>
<td>106</td>
<td>18</td>
<td>2,141</td>
<td>100,608</td>
<td>2,179,965</td>
<td>217,253</td>
<td>3,179,965</td>
<td>58,441</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>210</td>
<td>18</td>
<td>2,549</td>
<td>100,608</td>
<td>2,584,985</td>
<td>258,485</td>
<td>4,426,962</td>
<td>113,892</td>
</tr>
<tr>
<td>Duct Leakage</td>
<td>19</td>
<td>1</td>
<td>158</td>
<td>100,608</td>
<td>15,958</td>
<td>15,958</td>
<td>316,613</td>
<td>10,021</td>
</tr>
<tr>
<td>Lighting</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>100,608</td>
<td>183</td>
<td>183</td>
<td>7,249</td>
<td>384</td>
</tr>
<tr>
<td>Ceiling Insulation</td>
<td>60</td>
<td>4</td>
<td>977</td>
<td>100,608</td>
<td>88,222</td>
<td>88,222</td>
<td>1,080,432</td>
<td>32,065</td>
</tr>
<tr>
<td>TOTAL</td>
<td>395</td>
<td>41</td>
<td>5,427</td>
<td>100,608</td>
<td>550,101</td>
<td>550,101</td>
<td>9,020,821</td>
<td>214,811</td>
</tr>
</tbody>
</table>

Corrected Emissions
CZ2A Measure Level Savings

Phase I

<table>
<thead>
<tr>
<th>Measure</th>
<th>Electricity Savings (kWh)</th>
<th>Natural Gas Savings (therms)</th>
<th>Total Savings (kBtu)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Air Leakage</td>
<td>54</td>
<td>5</td>
<td>719</td>
<td>54,937</td>
<td>39,493</td>
<td>654,823</td>
<td>15,910</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>52</td>
<td>3</td>
<td>493</td>
<td>54,937</td>
<td>27,090</td>
<td>511,748</td>
<td>15,239</td>
</tr>
<tr>
<td>Duct Leakage Lighting</td>
<td>226</td>
<td>9</td>
<td>1,621</td>
<td>54,937</td>
<td>89,058</td>
<td>1,914,867</td>
<td>66,132</td>
</tr>
<tr>
<td>Lighting</td>
<td>264</td>
<td>-2</td>
<td>737</td>
<td>54,937</td>
<td>40,483</td>
<td>1,550,412</td>
<td>76,960</td>
</tr>
<tr>
<td>Ceiling Insulation</td>
<td>23</td>
<td>1</td>
<td>199</td>
<td>54,937</td>
<td>10,942</td>
<td>216,147</td>
<td>6,806</td>
</tr>
<tr>
<td>TOTAL</td>
<td>619</td>
<td>17</td>
<td>3,769</td>
<td>54,937</td>
<td>207,065</td>
<td>4,847,797</td>
<td>181,047</td>
</tr>
</tbody>
</table>

Phase III

<table>
<thead>
<tr>
<th>Measure</th>
<th>Electricity Savings (kWh)</th>
<th>Natural Gas Savings (therms)</th>
<th>Total Savings (kBtu)</th>
<th>Number of Homes</th>
<th>Total Energy Savings (MMBtu)</th>
<th>Total Energy Cost Savings ($)</th>
<th>Total State Emissions Reduction (MT CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Air Leakage</td>
<td>14</td>
<td>1</td>
<td>187</td>
<td>54,937</td>
<td>10,295</td>
<td>170,471</td>
<td>4,135</td>
</tr>
<tr>
<td>Exterior Wall Insulation</td>
<td>36</td>
<td>2</td>
<td>346</td>
<td>54,937</td>
<td>19,009</td>
<td>359,086</td>
<td>10,692</td>
</tr>
<tr>
<td>Duct Leakage Lighting</td>
<td>20</td>
<td>1</td>
<td>144</td>
<td>54,937</td>
<td>7,896</td>
<td>170,171</td>
<td>5,891</td>
</tr>
<tr>
<td>Lighting</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>54,937</td>
<td>105</td>
<td>4,050</td>
<td>202</td>
</tr>
<tr>
<td>Ceiling Insulation</td>
<td>58</td>
<td>3</td>
<td>498</td>
<td>54,937</td>
<td>27,367</td>
<td>540,180</td>
<td>16,994</td>
</tr>
<tr>
<td>TOTAL</td>
<td>129</td>
<td>7</td>
<td>1,178</td>
<td>54,937</td>
<td>64,673</td>
<td>1,243,988</td>
<td>37,913</td>
</tr>
</tbody>
</table>